40x^2+350=50x^2+250

Simple and best practice solution for 40x^2+350=50x^2+250 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40x^2+350=50x^2+250 equation:



40x^2+350=50x^2+250
We move all terms to the left:
40x^2+350-(50x^2+250)=0
We get rid of parentheses
40x^2-50x^2-250+350=0
We add all the numbers together, and all the variables
-10x^2+100=0
a = -10; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-10)·100
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*-10}=\frac{0-20\sqrt{10}}{-20} =-\frac{20\sqrt{10}}{-20} =-\frac{\sqrt{10}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*-10}=\frac{0+20\sqrt{10}}{-20} =\frac{20\sqrt{10}}{-20} =\frac{\sqrt{10}}{-1} $

See similar equations:

| f(-7)=2(-7)-3 | | 3x+3=-1+2x-11 | | 6(4n+7)=-102 | | 7+2p=7(1-6p) | | 2=10−2f | | M-6+7m=16-2m | | -8k-2=-82 | | 28+6x=4(7+8x) | | j3+-9=-7 | | x-3+2x-13=32 | | 4{x-2}=3x+1 | | -7=2-x | | 1+8a=-8a+1 | | 3c+3=23 | | -111=2s=9 | | 28=28+26x | | 1/3y+1/4=9/12 | | 28=26+28x | | 7c+8=-13 | | -8(-3-2r)=-104 | | 2/4y-2/5=5 | | 3u2+16u+16=0 | | 8b+12=-36 | | 6+5m=56 | | a+19=39 | | .80x-8=3 | | 6=3(v+5)-6v | | t=17=3 | | 8=c-5 | | 3(x-5)=-2-10 | | 8w+50=120 | | /9m-27+3m=7m+43 |

Equations solver categories